Renewable Fuel Vehicle Modeling and Analysis

Aaron Broker

National Renewable Energy Laboratory

Date: May 19, 2009

Project ID # VSSP 03 brooker

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: FY08

Project end date: FY09

Percent complete: 50%

Budget

- Total project funding (FY08- FY09)
 - DOE \$150K
 - Contractor \$0K

Barriers

Renewable fuel production
Renewable fuel cost
Hybrid and plug-in hybrid electric
vehicle cost

Partners

- Vehicle Systems (DOE)
- Fuels Technologies (DOE)

Objective

Evaluate renewable fuel pathways

- Combinations of
 - Renewable fuels (ethanol)
 - Advanced vehicles
- Impact on
 - Petroleum displacement
 - Cost/benefit

Milestones and Timeline

Approach

Link Critical Models & Data

Renewable fuels

Battery wear model

Component cost models

COL

Driving statistics

Fuel economy

Approach

Net Present Cost

What?

NOT the sum of all fuel costs

- The money needed today to pay for the vehicle and all future fuel purchases (e.g., only need \$5 today to pay for \$10 of fuel in 10 years)
- The lower the net present cost, the better the investment

Why?

Cost influences consumers

Approach

Key Assumptions

Long term perspective

E85 has 85% ethanol (in reality it contains less ethanol on average)

Average vehicle: mid-size car (similar to Prius)

35 MPG CAFE

\$4.10/gallon gasoline (EIA 6/30/08)

\$3.34/gallon E85 (e85prices.com 7/8/08)

E85 fuel consumption increase: <u>33%</u>

\$0.10/kWh electricity (EIA 2007 average)

8% discount rate²

15-year life (BTS)

12,375 miles/year (FHWA)

235 million vehicles (BTS)

Ethanol boost efficiency & cost claims¹

- Ethanol Turbo Boost For Gasoline Engines, Ethanol Boosting Systems LLC, http://www.ethanolboost.com/EBS_Overview.pdf
- Average stock market return 12% http://www.finfacts.com/stockperf.htm, adjusted for 4% inflation, last 7 years averaged < 3% http://www.inflationdata.com/Inflation/Inflation_Rate/CurrentInflation.asp

Accomplishment

HEVs Could Provide a Large Reduction in Oil Use with Little Additional Cost

Renewable Fuel Standard (RFS): 36 billion gallons per year by 2022 (http://www.whitehouse.govl)

^{*} Net includes vehicle and fuel cost

Accomplishment

E85's Price Tracks with Gasoline's, So Flex-Fuel Vehicles Have Been Just Shy Of Cost Effective

Accomplishment

The Ethanol Production Mandate (RFS) Does Not Entirely

Supply the Fleet

Cost and Fuel Use

Renewable Fuel Standard (RFS): 36 billion gallons per year by 2022 (http://www.whitehouse.govl)

^{*} Net includes vehicle and fuel cost

Future Work

Add other renewable fuel options for comparison

- Mid-level ethanol blends (10, 15, 20)
- Dedicated E85 vehicles (optimized for E85)
- Biodiesel (B20)
- AER PHEV 40
- Compare
 - Cost/benefit
 - Fuel use compared to production

Technical Target Tool approach

- Trade-off performance, vehicle cost, and fuel cost to find consumer-preferred vehicles
- Estimate oil use reductions based on those preferences

Summary

Flex-fuel vehicles

- Could significantly reduce oil use
- Are capable of using far more ethanol than produced today
- Need lower cost ethanol

Flex-fuel HEVs

- Reduce the long term ethanol production needs
- Provide a low cost, high oil reduction option

Information presented to industry through the Vehicle Systems Analysis Technical Team